Heat Exchanger Design for WO3 Synthesis using Hydrothermal Method

Maya Lianawati, Asep Bayu Dani Nandiyanto, Teguh Kurniawan, Risti Ragadhita

Sari


This study aims to analyze a heat exchanger (HE) design in the synthesisof WO3 using hydrothermal method. The data were calculated using Microsoft Excel application using several parameters and assumption. The result found that shell and tube designed heat exchanger have 80.04% effectiveness with initial heat transfer (Q) 383197 and some specifications included. However this result further calculation for fouling factor and appropriate value for TEMA standards.

Kata Kunci


Heat exchanger; WO3 nanoparticles; shell and tube; hydrothermal synthesis; HE design

Teks Lengkap:

PDF (English)

Referensi


Hajatzadeh, A., Aghakhani, S., Afrand, M., & Mahmoudi, B. (2019). An updated review on application of nano fluids in heat exchangers for saving energy. Energy Conversion and Management, 198(July), 111886. https://doi.org/10.1016/j.enconman.2019.111886

Sajid, M. U., & Ali, H. M. (2019). Recent advances in application of nanofluids in heat transfer devices: A critical review. Renewable and Sustainable Energy Reviews, 103(December 2018), 556–592. https://doi.org/10.1016/j.rser.2018.12.057

Hariharan, V., Gnanavel, B., Sathiyapriya, R., Aroulmoji, V., Hariharan, V., Gnanavel, B., Sathiyapriya, R., Review, V. A. A., Wo, O., Hariharan, V., Gnanavel, B., Sathiyapriya, R., & Aroulmoji, V. (2021). A Review on Tungsten Oxide (WO3) and their Derivatives for Sensor Applications. International Journal of Advanced Science and Engineering, 5, 1163–1168. https://doi.org/10.29294/ijase.5.4.2019.1163-1168

Santos, L., Silveira, C. M., Elangovan, E., Neto, J. P., Nunes, D., Pereira, L., Martins, R., Viegas, J., Moura, J. J. G., Todorovic, S., Almeida, M. G., & Fortunato, E. (2016). Synthesis of WO3 nanoparticles for biosensing applications. Sensors and Actuators, B: Chemical, 223, 186–194. https://doi.org/10.1016/j.snb.2015.09.046

Peleyeju, M. G., & Viljoen, E. L. (2021). WO3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from water – A review. Journal of Water Process Engineering, 40(January), 101930. https://doi.org/10.1016/j.jwpe.2021.101930

Yao, Y., Sang, D., Zou, L., & Wang, Q. (2021). A Review on the Properties and Applications of WO3 Nanostructure-Based Optical and Electronic Devices. Nanomaterials, 11, 2136.

Jamali, M., & Tehrani, F. S. (2020). Effect of synthesis route on the structural and morphological properties of WO3 nanostructures. Materials Science in Semiconductor Processing, 107, 104829. https://doi.org/10.1016/j.mssp.2019.104829

Kanan, S. M., & Tripp, C. P. (2007). Synthesis, FTIR studies and sensor properties of WO3 powders. Current Opinion in Solid State and Materials Science, 11, 19–27. https://doi.org/10.1016/j.cossms.2007.11.001

Sánchez-Martínez, D., Martínez-De La Cruz, A., & López-Cuéllar, E. (2013). Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties. Materials Research Bulletin, 48(2), 691–697. https://doi.org/10.1016/j.materresbull.2012.11.024

Ashkarran, A. A., Iraji Zad, A., Ahadian, M. M., & Mahdavi Ardakani, S. A. (2008). Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge method in deionized water. Nanotechnology, 19, 195709. https://doi.org/10.1088/0957-4484/19/19/195709

Ahmadian, H., & Tehrani, F. S. (2019). Hydrothermal synthesis and characterization of WO3 nanostructures: effects of capping agent and pH. Material Research Experts, 6, 105024.

Santhosh, M. V, Devaky, K. S., & Jayaraj, M. K. (2020). Hydrothermal synthesis of WO3 nanoparticles: Characterization and sonocatalytic study. Materials Today: Proceedings, xxxx, 10–12. https://doi.org/10.1016/j.matpr.2019.12.418




DOI: http://dx.doi.org/10.56444/cjce.v4i1.3636

Article Metrics

Sari view : 2903 times
PDF (English) - 0 times

Refbacks

  • Saat ini tidak ada refbacks.