BENZENE PRODUCTION FROM NATURAL GAS IN ARUN GAS FIELD: PROCESS DESIGN AND ECONOMIC EVALUATION

Meyland Meyland, Samuel Pangeran Aletheia, Yosia Gabriel Kurniawan, Kornelius Sophiano Tanuwidjaja, Michelle Michelle

Sari


This study designs a benzene production plant from natural gas in the Arun Gas Field, Aceh, Indonesia, with a focus on sustainability and economics. The plant could support Indonesia's government efforts in achieving the Enhanced Nationally Determined Contribution and carbon credit objectives. Using DWSim simulation, the processes modeled consists of natural gas purification, dehydroaromatization reaction, and benzene separation. The results demonstrate high efficiency in producing benzene with a purity of 99.5%-wt. Economic analysis indicates that the investment in this plant is financially viable, with an internal rate of return of 12.2%, a payback period of 7.6 years, and an 8.93% return on investment.  By combining sustainability and economic profitability, this research provides a foundation for the implementation of an environmentally friendly and sustainable benzene production plant in the Arun Gas Field.

Kata Kunci


Benzene; DWSim; Economic analysis; Natural gas; Sustainable production

Teks Lengkap:

PDF (English)

Referensi


F. R. von der Mehden, S. W. Lewis, Liquefied Natural Gas from Indonesia: The Arun Project, 2004. [Daring]. Tersedia pada: https://hdl.handle.net/1911/91497.

Zulkarnaini, Aceh Finds New Oil and Gas Well Reserves, Kompas, Agu 10, 2023.

N. Harsono, Zaratex to invest $134m for new gas field in Aceh, The Jakarta Post, Okt 30, 2019.

Q. Meng et al., Sustainable production of benzene from lignin, Nat. Commun., vol. 12, no. 1, hal. 4534, 2021.

IndexBox, Indonesia - Benzene - Market Analysis, Forecast, Size, Trends and Insights, 2023. [Daring]. Tersedia pada: https://www.indexbox.io/store/indonesia-benzene-market-analysis-forecast-size-trends-and-insights/.

Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia, ENHANCED NATIONALLY DETERMINED CONTRIBUTION REPUBLIC OF INDONESIA, 2022. [Daring]. Tersedia pada: https://unfccc.int/sites/default/files/NDC/2022-09/ENDC Indonesia.pdf.

OECD, Pricing Greenhouse Gas Emissions, OECD, 2022.

R. Nithyanandam, Y. K. Mun, T. S. Fong, T. C. Siew, O. S. Yee, N. Ismail, Review on production of benzene from petroleum associated gas by dehydroaromatization, partial oxidation of methane and methanol-to-aromatics processes, J. Eng. Sci. Technol., vol. 13, no. 12, hal. 4290–4309, 2018.

A. M. Niziolek, O. Onel, C. A. Floudas, Production of Benzene, Toluene, and the Xylenes from Natural Gas via Methanol, vol. 38. Elsevier Masson SAS, 2016.

S. I. Pérez-Uresti, J. M. Adrián-Mendiola, M. M. El-Halwagi, A. Jiménez-Gutiérrez, Techno-economic assessment of benzene production from shale gas, Processes, vol. 5, no. 3, 2017.

C. A. Grande, S. Roussanaly, R. Anantharaman, K. Lindqvist, P. Singh, J. Kemper, CO2 Capture in Natural Gas Production by Adsorption Processes, Energy Procedia, vol. 114, no. 1876, hal. 2259–2264, 2017.

S. Natesakhawat et al., Improved benzene production from methane dehydroaromatization over Mo/HZSM-5 catalysts via hydrogen-permselective palladium membrane reactors, Catal. Sci. Technol., vol. 5, no. 11, hal. 5023–5036, 2015.

S. Adhikari, S. Fernando, Hydrogen Membrane Separation Techniques, Ind. Eng. Chem. Res., vol. 45, no. 3, hal. 875–881, 2006.

K. Tangsriwong, P. Lapchit, T. Kittijungjit, T. Klamrassamee, Y. Sukjai, Y. Laoonual, Modeling of chemical processes using commercial and open-source software: A comparison between Aspen Plus and DWSIM, IOP Conf. Ser. Earth Environ. Sci., vol. 463, no. 1, hal. 012057, 2020.

A. Andreasen, Evaluation of an Open-source Chemical Process Simulator Using a Plant-wide Oil and Gas Separation Plant Flowsheet Model as Basis, Period. Polytech. Chem. Eng., vol. 66, no. 3, hal. 503–511, 2022.

D. Cubides-Román et al., Methyl Esters Production by Heterogeneous Catalyst Mixtures of CaO/Nb2O5 with Simulation of Analysis of Environmental Impacts, J. Braz. Chem. Soc., 2018.

Kementerian Energi dan Sumber Daya Mineral, Faktor Emisi Gas Rumah Kaca (GRK) Sistem Interkoneksi Ketenagalistrikan, 2019. https://gatrik.esdm.go.id/frontend/download_index/?kode_category=emisi_pl (diakses Feb 26, 2024).

G. C. I. Lin, S. V. Nagalingam, CIM Justification and Optimisation, 1 ed. London: Taylor & Francis, 2000.

C. S. Park, Contemporary Engineering Economics, 4 ed. London: Pearson Publishing, 2007.

R. Turton, J. Shaeiwitz, D. Bhattacharyya, W. Whiting, Analysis, Synthesis, and Design of Chemical Processes, 5 ed. Pearson Publishing, 2018.

E. C. Corredor, P. Chitta, M. D. Deo, Techno-economic evaluation of a process for direct conversion of methane to aromatics, Fuel Process. Technol., vol. 183, hal. 55–61, 2019.




DOI: http://dx.doi.org/10.56444/cjce.v5i1.4865

Article Metrics

Sari view : 70 times
PDF (English) - 0 times

Refbacks

  • Saat ini tidak ada refbacks.