PENGURANGAN KADAR KARBONDIOKSIDA (CO2) DALAM BIOGAS DENGAN BIOFIKSASI MIKROALGA Chlorella vulgaris DAN Scenedesmus obliquus
Sari
Kata Kunci
Teks Lengkap:
PDFReferensi
Bottezini L, Dick DP, Wisniewski A, Knicker H, Carregosa ISC. Phosphorus species and chemical composition of water hyacinth biochars produced at different pyrolysis temperature. Bioresour Technol Rep. 2021 Jun 1;14.
Ingabire H, Twizerimana M, M. M’Arimi M. Effect of co-digestion with water hyacinth, inoculum concentration and dilution on biogas production of fish waste. Energy Reports. 2023 Oct 1;9:286–90.
Gunnarson dan Peterson. (2007). Water Hyacinth as a Resource and Energy Production. Waste Management, 117-129.
Farzana. (2014). Biogas Production from Anaerobic Co-Digester of Cow Manure with Kichen Waste and Water Hyacinth. Renew Energy, 434-439.
Jagadish. (2014). Anaerobic Co-Digester of water Hyacinth and Sheep Waste. Energy Procedia, 572-578.
Visva. (2018). Anaerobic Co-Digestion of Water Hyacinth and Banan Peels with and without Thermal Pretreatment. Renewable Energy, 103-112.
Azay. 2017. The Use of Water Hyacinth Biomass from Greywater Treatment Pond for Biogas Production. Fakultas Teknik Sipil dan Perencanaan. Institut Teknologi Sepuluh November Surabaya.
L. Jurgutis, A. Šlepetienė, K. Amalevičiūtė-Volungė, J. Volungevičius, and J. Šlepetys, “The effect of digestate fertilisation on grass biogas yield and soil properties in field-biomass-biogas-field renewable energy production approach in Lithuania,” Biomass Bioenergy, vol. 153, Oct. 2021, doi: 10.1016/j.biombioe.2021.106211.
Z. Hua, J. Li, B. Zhou, S. W. Or, K. W. Chan, and Y. Meng, “Game-theoretic multi-energy trading framework for strategic biogas-solar renewable energy provider with heterogeneous consumers,” Energy, vol. 260, Dec. 2022, doi: 10.1016/j.energy.2022.125018.
G. R. A. Samosir, E. A. Nainggolan, M. M. Kinda, and D. Anwar, “Isolation and Identification of Biogas-Producing Methanogenic Bacteria from Cow Manure,” in Proceedings of the 4th International Conference on Life Sciences and Biotechnology (ICOLIB 2021), Atlantis Press International BV, 2023, pp. 444–450. doi: 10.2991/978-94-6463-062-6_44.
Price dan Chremisinoff. (1981). Biogas Production and Utilization. Arbor Science Publisher.
Sergio. (2008). Optimization of the Hydrolytic-Acidogenik Anaerobic Digestion. Reservior, 3972-3980.
Abdurrachman, O. (2013). Peningkatan Karbon Dioksida dengan Mikroalga (Chlorella vulgaris, Chlamydomonas sp., Spirulina sp.) dalam upaya untuk Meningkatkan Kemurnian Biogas. Teknologi Kimia dan Industri, 212-216.
Kumar, D. (2011). Development of Suitable Photobioreactor for CO2 Sequestration Addressing Global Warming using Green Algae and Cyanobacteria. India: Bioresource Technology. Merizawati. (2008). Analisis Sinar Merah, Hijau dan Biru untuk Mengukur Kelimpahan Fitoplankton Chlorella vulgaris. Institut Pertanian Bogor, 87.
Morais dan Costa, M. G. (2007). Carbon Dioxide Fixation by Chlorella kessleri, Chlorella vulgaris, Scenedesmus obliquus and Spirulina sp. Cultivated in Flasks and Vertical Tubular Photobioreactors. Biotechnol Lett, 1349-1352.
Soeprobowati, T. (2012). Mitigasi Danau Eutrofik: Studi Kasus Danau Rawapening. Prosiding Seminar Nasional Limnologi IV, 36-48.
Hadyanto dan Widayat. (2014). Biofiksasi CO2 oleh Mikroalga Chlamydomonas sp. dalam Photobioreactor Tubular. Semarang: Jurusan Teknik Kimia Fakultas Teknik.
Wilde, C. (1993). A Culture Method for Microalgae Forms to Studies on Growth and Carotenoid Production. World Journal of Microbiology and Biotechnology, 325-329.
Horikawa. (2004). Chemical Absorption of H2S for Biogas Purification. Brazilian Journal of Chemical Engineering. 21 (3), 415-422.
DOI: http://dx.doi.org/10.56444/cjce.v4i2.4432
Article Metrics
Sari view : 1454 timesPDF - 0 times
Refbacks
- Saat ini tidak ada refbacks.